Transient analysis and control of a heat to power conversion unit based on a simple regenerative supercritical CO2 Joule-Brayton cycle

نویسندگان

چکیده

Supercritical carbon dioxide (sCO2) heat to power systems are a promising technology thanks their potential for high efficiency and operational flexibility. However, dynamic behaviour during part-load transient operation is still not well understood further research needed. Additionally, there enough literature addressing suitable control approaches when the objective follow dynamics of load supplied by topping process maximise recovery. The current aims fill these gaps proposing one-dimensional modelling formulation calibrated against major components 50 kWe sCO2 test facility available at Brunel University London. analysis showed that system quickly adapts 2800s profile, proving flexible nature investigated. turbine by-pass, startup shutdown modes operation, enabled gradual safe build-up/decline pressures temperatures throughout loop. regulation inventory in range 20–60 kg allowed 30% variation inlet temperature with lower penalties on performance than turbomachinery speed control. designed proportional-integral controller rapid response around set point 773 K large variations load.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Algorithm based PID Tuning for Optimal Power Control of a Three- shaft Brayton Cycle based Power Conversion Unit

This paper considers the development of a PID control strategy to optimally control the power output of a High Temperature Gas-cooled Reactor (HTGR) power plant. A specific type of HTGR called the Pebble Bed Modular Reactor (PBMR) that utilises a closed recuperative Brayton cycle with helium as working fluid is considered. The power control of this kind of plant is significantly different from ...

متن کامل

Exergoeconomic analysis and genetic algorithm power optimization of an irreversible regenerative Brayton cycle

In this study, the performance of an irreversible regenerative Brayton cycle is sought through power maximizations using finite-time thermodynamic concept in finite-size components. Optimizations are performed using a genetic algorithm. In order to take into account the finite-time and finite-size concepts in the current problem, a dimensionless mass-flow rate parameter is used to deploy ti...

متن کامل

Exergoeconomic analysis and genetic algorithm power optimization of an irreversible regenerative Brayton cycle

In this study, the performance of an irreversible regenerative Brayton cycle is sought through power maximizations using finite-time thermodynamic concept in finite-size components. Optimizations are performed using a genetic algorithm. In order to take into account the finite-time and finite-size concepts in the current problem, a dimensionless mass-flow rate parameter is used to deploy ti...

متن کامل

Conceptual design of a super-critical CO2 brayton cycle based on stack waste heat recovery for shazand power plant in Iran

Conceptual design of a waste heat recovery cycle is carried out in attempt to enhance the thermal efficiency of a steam power plant. In the recovery system, super-critical an CO2 is employed as the working fluid operating in a Brayton cycle. Low grade heat rejected by the flue gases through the stack is used as the primary heat source, while a secondary heat exchanger utilizes th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Thermal Engineering

سال: 2021

ISSN: ['1873-5606', '1359-4311']

DOI: https://doi.org/10.1016/j.applthermaleng.2020.116214